Metabolic depletion of sphingolipids enhances the mobility of the human serotonin1A receptor.

نویسندگان

  • Sourav Ganguly
  • Yamuna Devi Paila
  • Amitabha Chattopadhyay
چکیده

Sphingolipids are essential components of eukaryotic cell membranes. We recently showed that the function of the serotonin(1A) receptor is impaired upon metabolic depletion of sphingolipids using fumonisin B(1) (FB(1)), a specific inhibitor of ceramide synthase. Serotonin(1A) receptors belong to the family of G-protein coupled receptors and are implicated in the generation and modulation of various cognitive, behavioral and developmental functions. Since function and dynamics of membrane receptors are often coupled, we monitored the lateral dynamics of the serotonin(1A) receptor utilizing fluorescence recovery after photobleaching (FRAP) under these conditions. Our results show an increase in mobile fraction of the receptor upon sphingolipid depletion, while the diffusion coefficient of the receptor did not exhibit any significant change. These novel results constitute the first report on the effect of sphingolipid depletion on the mobility of the serotonin(1A) receptor. Our results assume greater relevance in the broader context of the emerging role of receptor mobility in understanding cellular signaling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metabolic Depletion of Sphingolipids Impairs Ligand Binding and Signaling of Human Serotonin<sub>1A</sub> Receptors<xref rid="fn1"></xref>

Sphingolipids are essential components of eukaryotic cell membranes and are thought to be involved in a variety of cellular functions. Mycotoxins such as fumonisins can disrupt sphingolipid metabolism, and treatment with fumonisins represents an efficient approach to modulate cellular sphingolipid levels. In this work, we modulated sphingolipid levels in CHO cells stably expressing the human se...

متن کامل

Membrane cholesterol oxidation in live cells enhances the function of serotonin1A receptors.

The serotonin1A (5-HT1A) receptor is an important neurotransmitter receptor that belongs to the G protein-coupled receptor (GPCR) family. It is implicated in a variety of cognitive and behavioral functions and serves as an important drug target for neuropsychiatric disorders such as anxiety and depression. Previous work from our laboratory has demonstrated that membrane cholesterol plays an imp...

متن کامل

Ligand binding and G-protein coupling of the serotonin1A receptor in cholesterol-enriched hippocampal membranes.

The serotonin1A receptor is the most extensively studied member of the family of seven transmembrane domain G-protein coupled serotonin receptors. Since a large portion of such transmembrane receptors remains in contact with the membrane lipid environment, lipid-protein interactions assume importance in the structure-function analysis of such receptors. We have earlier reported the requirement ...

متن کامل

Cholesterol modulates the antagonist-binding function of hippocampal serotonin1A receptors.

The serotonin1A receptor is the most extensively studied member of the family of seven transmembrane domain G-protein coupled serotonin receptors. Serotonergic signaling appears to play a key role in the generation and modulation of various cognitive and behavioral functions such as sleep, mood, pain, addiction, locomotion, sexual activity, depression, anxiety, alcohol abuse, aggression and lea...

متن کامل

Magnesium supplementation enhances insulin sensitivity and decreases insulin resistance in diabetic rats

Objective(s): Diabetes mellitus has been suggested to be the most common metabolic disorder associated with magnesium deficiency. This study aimed to investigate the effects and mechanisms of magnesium supplementation on insulin receptor activity in elderly type 2 diabetes using a rat model and to provide experimental evidence for insulin resistance improvement by magn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemical and biophysical research communications

دوره 411 1  شماره 

صفحات  -

تاریخ انتشار 2011